Tower-Based Validation and Improvement of MODIS Gross Primary Production in an Alpine Swamp Meadow on the Tibetan Plateau

نویسندگان

  • Ben Niu
  • Yongtao He
  • Xianzhou Zhang
  • Gang Fu
  • Peili Shi
  • Mingyuan Du
  • Yangjian Zhang
  • Ning Zong
چکیده

Alpine swamp meadow on the Tibetan Plateau is among the most sensitive areas to climate change. Accurate quantification of the GPP in alpine swamp meadow can benefit our understanding of the global carbon cycle. The 8-day MODerate resolution Imaging Spectroradiometer (MODIS) gross primary production (GPP) products (GPP_MOD) provide a pathway to estimate GPP in this remote ecosystem. However, the accuracy of the GPP_MOD estimation in this representative alpine swamp meadow is still unknown. Here five years GPP_MOD was validated using GPP derived from the eddy covariance flux measurements (GPP_EC) from 2009 to 2013. Our results indicated that the GPP_EC was strongly underestimated by GPP_MOD with a daily mean less than 40% of EC measurements. To reduce this error, the ground meteorological and vegetation leaf area index (LAIG) measurements were used to revise the key inputs, the maximum light use efficiency (εmax) and the fractional photosynthetically active radiation (FPARM) in the MOD17 algorithm. Using two approaches to determine the site-specific εmax value, we suggested that the suitable εmax was about 1.61 g C MJ ́1 for this alpine swamp meadow which was considerably larger than the default 0.68 g C MJ ́1 for grassland. The FPARM underestimated 22.2% of the actual FPAR (FPARG) simulated from the LAIG during the whole study period. Model comparisons showed that the large inaccuracies of GPP_MOD were mainly caused by the underestimation of the εmax and followed by that of the undervalued FPAR. However, the DAO meteorology data in the MOD17 algorithm did not exert a significant affection in the MODIS GPP underestimations. Therefore, site-specific optimized parameters inputs, especially the εmax and FPARG, are necessary to improve the performance of the MOD17 algorithm in GPP estimation, in which the calibrated MOD17A2 algorithm (GPP_MODR3) could explain 91.6% of GPP_EC variance for the alpine swamp meadow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Satellite-Based Inversion and Field Validation of Autotrophic and Heterotrophic Respiration in an Alpine Meadow on the Tibetan Plateau

Alpine meadow ecosystem is among the highest soil carbon density and the most sensitive ecosystem to climate change. Partitioning autotrophic (Ra) and heterotrophic components (Rm) of ecosystem respiration (Re) is critical to evaluating climate change effects on ecosystem carbon cycling. Here we introduce a satellite-based method, combining MODerate resolution Imaging Spectroradiometer (MODIS) ...

متن کامل

Variation of soil hydraulic properties with alpine grassland degradation in the Eastern Tibetan Plateau

Ecosystems in alpine mountainous regions are usually more vulnerable and easily be disturbed by environmental change globally. Alpine swamp meadow, a unique grassland type in the eastern Tibetan Plateau which provides important ecosystem services to the upstream and downstream regions of international rivers of Asia even the world, is undergoing severe degradation, which can dramatically alter ...

متن کامل

Biophysical regulation of carbon fluxes over an alpine meadow ecosystem in the eastern Tibetan Plateau.

The eddy covariance method was used to measure net ecosystem CO2 exchange (NEE) between atmosphere and an alpine meadow ecosystem in the eastern Tibetan Plateau of China in 2010. Our results show that photosynthesis was reduced under low air temperature (T a), high vapor pressure deficit (VPD), and medium soil water content (SWC) conditions, when compared to that under other T a (i.e., medium a...

متن کامل

Habitat-specific responses of leaf traits to soil water conditions in species from a novel alpine swamp meadow community

Species originally from alpine wetland and alpine meadow communities now coexist in a novel 'alpine swamp meadow' community as a consequence of wetland drying in the eastern Tibetan Plateau. Considering the projected increase in the fluctuation of water supply from precipitation during the growing season in this area in the future, it is important to investigate the responses of the species tha...

متن کامل

Large-scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands

Gross primary production (GPP) is an important parameter for carbon cycle and climate change research. Previous estimations of GPP on the Tibetan Plateau were usually reported without quantitative uncertainty analyses. This study sought to quantify the uncertainty and its partitioning in GPP estimation across Tibetan alpine grasslands during 2003–2008 with the modified Vegetation Photosynthesis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016